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Abstract  

The spectral remote sensing field has evolved over several 
decades from color imagery to multispectral imagery to 
today’s imaging spectrometer data. The goal of this 
evolution was to acquire increasingly detailed information 
about material types on the earth’s surface. The 
expectation was that adding more spectral bands would add 
increasing material separability and increasing information 
about the condition (e.g. water quality or vegetation health) 
of a given material. This paper will address the extent to 
which these expectations are being realized (i.e. are 100 
bands dramatically better than 3 bands). In addition, the 
algorithms that have been developed by the remote sensing 
community for understanding (i.e. unmixing) mixtures of 
materials based on spectral content are briefly introduced. 
Finally, the potential to utilize imaging spectroscopy in 
other applications areas is discussed.  

Introduction and Summary  

Remote sensing of the earth and the planets has evolved 
dramatically over the last several decades. Advances in 
sensor technology and data processing power have enabled 
the development of analysis tools that have provided 
increasingly detailed knowledge of the planets surface and 
environment. Much of this advance has been enabled by 
the increasing spectral content of the data. Because remote 
sensing science is driven by and coupled to NASA’s space 
programs and the defense/intelligence community’s 
reconnaissance mission, the field often leads the way in 
developing new technology and analytical tools. This paper 
briefly reviews the evolution of spectral remote sensing in 
the hope that it will motivate practitioners of other fields 
who may be able to adapt the lessons learned to the 
characterization of other targets. In particular the fields of 
machine vision, art conservation, medical imaging and 
non-destructive testing are beginning to take advantage of 
some of the early developments in spectral remote sensing.  

2. Color Remote Sensing  

The early days of remote sensing focused on the use of 
black and white film and advancements focused on the 
development of higher resolution and larger format films to 

support more detailed or larger area photo interpretation. 
As color film was developed it was put to use in attempts 
to better characterize the earth.  

2.1 Color Sensor and Processing Technology  
The color films and cameras used by the remote 

sensing community were (and are) very similar to the color 
positive slide films in regular use today. They used three 
bands (red, green, blue) to attempt to capture and record 
the color of objects. Technological advances focused on 
higher spatial resolution, improved color reproduction, 
higher film speeds (to reduce blurring due to aircraft 
motion) and larger film and camera format to increase 
spatial coverage. Color films were initially just analyzed 
using photo interpretation with the color tones adding 
increased information about the condition of a material 
type (e.g., clarity of water, age of asphalt) and spatial 
patterns used to define material type. With increased 
interest in quantitative information the idea of using the 
film camera system as an analytical instrument evolved. 
Initially this involved developing methods to relate color 
film density to exposure (i.e. to remove film nonlinearities 
c.f. James 1977) and the use of control targets in the scenes 
that allowed us to demonstrate the linear relationship 
between reflectance and exposure. This meant that 3 colors 
density readings could be related to 3 color reflectance 
values for points on the earth. Image processing of color 
film was largely done using analog methods that were 
usually limited to simple two band combinations that 
would allow the generation of images whose brightness 
was proportioned to a ratio of color bands (c.f. Piech and 
Walker 1974).  

2.2 Color Analysis Methods  
The remote sensing communities use of 3 color data 

focused heavily on the correlation of single band or simple 
band ratios with material condition. For example, the 
amount of chlorophyll in a water column was shown to be 
related to the B/G reflectance ratio (c.f. Piech et al. 1978) 
and soil moisture could also be related to reflectance ratios 
(c.f. Piech and Walker 1974). Most of these methods 
required a number of on site measurements (what the 
remote sensing community calls ground truth) and were 
only valid in localized areas over which most other 
variables were constant. More importantly these methods 
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generally relied on spatially oriented photo interpretation 
to provide most of the analysis with the color data used to 
delineate variations within a class.  

3. Multispectral Remote Sensing  

The limited number of degrees of freedom (3), the high 
band-to-band correlation and the interest in spectral 
signatures that might lie beyond the visible led to interest 
in more spectral bands covering a wider spectral range.  

3.1 Multispectral Sensor and Processing Technology  
The first forays into multi spectral remote sensing 

began with film-based tools. One of the earliest, and still 
among the most widely used, was the use of color infrared 
film. This is a 3-band film much like true color positive 
film. The difference is that the effective film sensitivities 
are in the green, red and infrared and the film is developed 
such that the green, red and infrared energy modulate the 
blue, green and red brightness values (densities) of the 
processed color film. The results and motivation are shown 
in Figure 1. The reflectance of vegetation is very high in 
the infrared resulting in a red appearance in the color 
infrared image. The film was widely used to detect early 
camouflage that mimicked vegetation in the visible but not 
in the infrared.  

The image in Figure 1 shows a more modern 
camouflage that attempts to track the reflectance of 
vegetation. In general the camouflage looks like stressed 
vegetation (lower infrared return) and can often be detected 
by the color tones in the color infrared images. The 
agriculture and forestry communities become very 
intrigued with the use of near infrared imagery because 
much of the subtle variation in vegetation density, health 
and type was manifest as brightness variations in the 
infrared images. To look at more and narrower spectral 
bands, film systems were developed that used spectral 
filters and broadband panchromatic film (0.4 - 0.95cm) to 
acquire multiple black and white images representing 
many spectral bands. The fundamental limits on the 
sensitivity of film led to the evolution of electro optical 
imaging systems employing solid-state detectors. These 
systems were capable of sensing in many bands across the 
spectral range from 0.4µm to 14µm. Large amounts of 
multispectral imagery became available in 1972 when 
NASA’s first Landsat satellite began collecting 4 spectral 
band images of the globe (green, red, and 2 near infrared 
bands). Subsequent Landsat satellites added more bands 
with the current Landsat 7 instrument acquiring data from 
the blue through the long wave infrared (10-12.5µm) in 7 
bands most with approximately 30m-sample size on the 
ground. The Landsat data also represented the first wide 
spread access to digital data and ushered in the use of 
digital image processing as a means to analyze remotely 
sensed data.  

 

 

Figure 1. Illustration of the difference between early camouflage 
reflectance spectra and vegetation. The color infrared image 
illustrates how modern camouflage begins to mimic vegetation.  

3.2 Multispectral Analysis Methods  
Access to many bands of data coupled with the digital 

format of the data led to new ways of thinking about 
analyzing remotely sensed data. More emphasis shifted to 
computer based methods of analysis and mathematical 
representations of the data. Increasingly we tried to use the 
spectral variability in the data to allow us to segment the 
data into different material classes or land cover types. 
This was done by representing the data in each pixel as a 
spectral vector, made up of the brightness or digital count 
in each band. By interactively selecting regions in an 
image characteristic of each material type of interest we 
can train algorithms to learn what a material type looks 
like. In the simplest case the mean vector for each class 
can be computed and then any other pixel can be assigned 
to a class based on which of the class means it is closest to, 
using simple Euclidean distance as a measure of closeness 
i.e., 

d i = X − Mi( )T
X −Mi( )[ ]

1

2    (1)  

where di is the Euclidean distance from the pixel vector X 
to the mean vector for the ith class Mi. This method can be 
extended to account for the spectral variability in the data 
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using the Gaussian Maximum Likelihood (GML) classifier. 
The GML classifier uses the spectral covariance of each 
material class computed from the training data, plus the 
class means, to compute which material class each pixel is 
most like and then assigns the pixel to that class (c.f. 
Schott 1997). A wide range of multispectral classifiers 
have evolved from these basic approaches. By taking 
advantage of the inherent spectral variability in natural 
surfaces and the higher dimensionality of the data available 
from modern systems (often 6 – 15 bands) a high degree of 
classification accuracy (85 – 95%) is achievable for a 
modest number of classes (6 – 15). A limitation of this 
approach is that the classifiers must be retrained for each 
image since the mean and covariance vectors are a function 
of illumination, atmospheric and sensor response 
characteristics. Two approaches have been developed to 
overcome this limitation. The first approach is to transform 
the data into engineering units (e.g. reflectance) or at least 
into a common set of units (e.g. the same brightness scale 
as a previously analyzed image). In this fashion, previously 
trained classifiers can be used on any new data set. The 
second approach uses an unsupervised classification or 
clustering technique to find spectrally similar pixels in a 
multispectral image (c.f. Duda and Hart 1973). The 
spectrally similar pixels are then assigned to a common 
class, which in many cases corresponds to a meaningful 
land cover class. Clearly the user must decide if the 
spectrally generated classes have intuitive meaning and 
assign class descriptions.  

Once an image has been classified we are often 
interested in describing the condition of a class. In many 
cases conditions of interest can be described based on 
linear combinations of spectral values. For example, a 
commonly used indicator of vegetation vigor (health and 
biomass) is the Normalized Difference Vegetation Index 
(NDVI), which can be computed on a per pixel basis as:  

NDVI =
IR − R
IR + R

     (2) 

where IR and R are the brightness (expressed as digital 
count, radiance or reflectance depending on the level of 
radiometric calibration available) in the near infrared and 
red respectively (Rouse et al. 1973). The combination of a 
difference and a ratio in the NDVI metric tends to mitigate 
illumination and atmospheric variations within and 
between scenes to make NDVI type metrics more 
consistent over many images. Figure 2 shows a NDVI 
image of North America assembled from many satellite 
images (to achieve both coverage and cloud free results). 
Figure 3 shows a global image map where the land areas 
have been processed to show NDVI and the water regions 
have been processed with multispectral data from a second 
sensor using a simple linear combination of spectral band 
values that is correlated with chlorophyll content in the 
water.  

 

Figure 2. Map of the normalized difference vegetative index of 
North America derived from AVHRR data. (Image produced 
jointly by the Canada Center for Remote Sensing and the EROS 
Data Center.)  

 

Figure 3. This image shows the vegetation vigor over land as 
mapped using NDVI applied to AVHRR imagery and chlorophyll 
content in the ocean surface waters derived from the coastal zone 
color scanner satellite program. (Image from Goddard Space 
Flight Center Earth Sciences Distributed Active Archive Center’s 
Ocean Color) 

 

4. Spectroscopic Remote Sensing  

Multispectral remote sensing allows the classification of 
scenes into handfuls of classes and at least the relative 
characteristic of the condition within certain classes. 
However, it often requires a great deal of ancillary data to 
calibrate or correct the data for atmospheric and 
illumination effects and the number of land cover or 
material classes is often limited by spectral ambiguity 
between the data from a small number of bands. This has 
led the remote sensing community to develop imaging 
spectrometers capable of forming images where each pixel 
can be represented as a spectrogram consisting of tens to 
hundreds of spectral samples. The hope behind imaging 
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spectroscopy is that these spectrograms will carry detailed 
information about what materials are present in a pixel and 
what the condition or status of the material may be.  

4.1 Spectroscopic Sensor and Processing Technology  
There are several spectrometer designs in use today. 

Much of the readily available data comes from NASA’s 
Advanced Visible Infrared Imaging Spectrometer 
(AVIRIS). The AVIRIS instrument acquires data in 224 
spectral band (roughly 10nm bandwidth on 10nm centers 
from 0.4-2.5µm [c.f. Vane et al. 1993]). The image data 
from what is referred to as an image cube.  

Two dimensions of the cube are spatial and the third is 
spectral. Figure 4 shows an example image from an 
airborne imaging spectrometer illustrating the cube concept 
as well as the ability to interrogate any pixel to generate a 
spectrum. The AVIRIS sensor and RIT’s MISI sensor that 
generated the image in Figure 4 are line scanners which 
use a mirror moving in the cross track direction to form 
one spatial dimension of the image and the forward motion 
of the aircraft to form the other spatial dimension (c.f. 
Figure5a). The spectral dimension is formed by one or 
more diffraction spectrometers dispersing the spectrum 
onto linear arrays of detectors. A commonly used 
alternative is a push broom design that uses two-
dimensional arrays. One dimension is used to gather spatial 
data in the cross track direction and the other gathers 
spectral data (c.f. Figure 5b). The push broom design has 
been developed using both grating and prism 
spectrometers. Instruments have now been developed that 
acquire spectral data in atmospheric windows ranging 
anywhere from 0.4-14µm. Most of these instruments 
generate 50 to a few hundred spectral samples. An 
alternate approach uses a Fourier transform imaging 
spectrometer to generate hundreds or thousands of two-
dimensional interferograms that can be transformed into 
very high resolution imaging spectrograms (i.e. image 
cubes) (c.f. Wadsworth et al. 1997). To date, most imaging 
spectrometers have been flown on airborne instruments. 
However, NASA is flying a simplified imaging 
spectrometer called MODIS (36 spectral bands) in space, 
which generates global data sets with approximately 1km 
spatial resolution (c.f. Salomonson et al. 2002). Figure 6 
shows a MODIS image of the east coast generated from 
three of its spectral bands illustrating the wide area 
coverage available from space. In addition, NASA is flying 
a research instrument called Hyperion, which is a true 
imaging spectrometer with hundreds of bands and high 
spatial resolution (30m). However, because Hyperion is a 
research instrument it only generates relatively limited 
coverage of the earth (c.f. Pearlman et al. 2001).  

The spectral nature of the data from these instruments 
results in very large data sets requiring much more 
computer power to store, transmit and analyze the image 
cubes. Only in the last few years have advances in 
communication bandwidth and processing power made use 
of these data practical. The combination of advances in 
sensor technology coupled with high speed and parallel 

processing have opened the door for the use of advanced 
processing tools, which can generate results in reasonable 
times.  

  

 

Figure 4. Illustration of the image cube concept including the 
concept of spectral vectors associated with each pixel. The top of 
the image cube shows a 3-band true color image acquired with 
RIT’s 75 band imaging spectrometer (MISI).  

(a)  

(b)  

Figure 5. (a) Illustration of the line scanner and (b) push broom 
scanner imaging spectrometer designs.  
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Figure 6. MODIS Moderate Resolution Imaging Spectroradio-
meter. Image of the East Coast  

4.2 Spectroscopic Analysis Methods  
Access to imaging spectrometer or hyperspectral data 

has opened the door for a wide range of analysis tools 
focused on the spectral nature of the data. To date 
simultaneous processing of the spatial and spectral 
properties has been rather limited. In part this is because of 
the initial interest in taking advantage of the here-to-fore 
unavailable spectral properties in the data. In addition, 
most data available from imaging spectrometers has been 
of relatively low spatial resolution making it difficult to 
take advantage of spatial structure in analyzing the data.  

One of the earliest methods of analyzing imaging 
spectrometer data was based on the assumption that the 
spectral character associated with any pixel was the result 
of a combination of spectral signatures due to a spatial 
mixture of material types within the pixel. This concept of 
sub pixel analysis is not driven as much by the lower 
spatial resolution of hyperspectral data as by the fact that 
the higher dimensionality of the spectroscopic data allows 
us to extract sub pixel information. One way to extract the 
sub pixel data is to use an approach called unmixing (c.f. 
Smith et al 1990). In its simplest form, we use a model to 
describe the spatial mixing of material exemplars (called 
end members) that combine to cause an observed spectrum. 
This can be expressed as:  

X = fiE i
i =1

n

∑           (3) 

where X is the spectral vector associated with a pixel, fi, is 
the spatial fraction of the ith end member represented in the 
pixel, Ei is the exemplar spectrum associated with a pure 
pixel of material type and is the number of materials (end 
members) that may be combined in the pixel. Inspection of 
Equation 3 shows that as long as the spectral dimension of 
the X and E vectors exceeds the number of end members n 
then we can estimate the values for the fractions (fi) of 
each end member in a pixel. In practice this is usually 
applied in a region of interest (e.g. an agricultural field) 
where we can severely restrict the possible end members 
(e.g. corn, weeds, soil). The output of this process is an 
estimate of the fractional amount of each end member in 
each pixel. These can be used to generate fraction maps or 
abundance maps showing the spatial distribution of each 
end member coded by brightness or combinations of end 
member maps can be displayed using color-coding 
schemes.  

The difficult part of implementing Equation 3 is to 
define the pure end member spectra. In many cases, pure 
spectra may not exist in a scene or they may be difficult to 
identify by photo interpretation. An alternative to 
extracting the data from the image is to use library values 
of spectral reflectance values acquired with laboratory of 
field spectrometers. The use of reflectance libraries 
requires us to transform the image cube data from digital 
counts to surface reflectance values. Typically this is a 
two-step process where the first step is to convert the 
digital count values into the sensor reaching radiance that 
caused that digital count level. This is the result of 
instrument calibration. The second step involves correcting 
the radiance spectrum for the effects of illumination and 
atmospheric propagation and results in a reflectance 
spectrum. This second step has plagued the analysis of 
color and multispectral data. In essence it has only been 
solved effectively for those cases where known reflectance 
standards existed in the image.  

However, analysis of hyperspectral data showed that 
the magnitude of atmospheric effects could be detected by 
the strength of spectral absorption features recorded in the 
spectrum associated with each pixel (c.f. Figure 7). By 
comparing models and measurements of the shape and 
depth of absorption features (e.g. water vapor) it is possible 
using imaging spectrometer data to generate 
atmospherically corrected image cubes expressed as 
surface reflectance spectra (c.f. Green et al 1993 and Gao 
and Goetz 1990). Once the data are in reflectance space, 
library end members can be used in the unmixing process.  

A variety of other spectral analysis techniques have 
been developed for analysis of hyperspectral data. Many of 
these involve looking for spectral similarities between a 
spectrum of interest and every pixel in an image (c.f. Kruse 
et al. 1993 and Harsanyi and Cheng 1994). Many of these 
methods allow detection of subpixel manifestations of the 
target of interest even though it may only exist as a small 
spatial fraction within a pixel. These techniques can be 
combined to map the presence and estimate the 
concentration of many material types within an image. 
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Figure 8 shows how AVIRIS data can be analyzed to 
generate mineral maps for geologic studies and Figure 9 
illustrates how the three primary coloring agents in coastal 
waters can be mapped to their concentration levels based 
on analysis of the spectral data. While the details of these 
analyses methods are beyond the scope of this paper it 
should be clear that the high dimensionality of the spectral 
data offers the opportunity for much more detailed and 
subtle analysis of both what is present in an image and 
what is the concentration or condition of the material 
present.  

 

 

Figure 7. Comparison of measured and predicted spectral 
characteristics near the 940-nm water absorption band.  

 

Figure 8. Detailed mineralogical map produced by analysis of 
imaging spectrometer data. (Image from U.S. Geological Survey 
Spectroscopy Lab)  

 

 

 

 

Figure 9. Zoom of an AVIRIS image cube of Lake Ontario along 
with concentration maps of colored dissolved organic material, 
CDOM, chlorophyll and suspended solids derived from spectral 
analysis of the AVIRIS data.  

5. Extension to Other Disciplines  

The remote sensing community has led the way in many 
aspects of spectroscopic image analysis because they were 
early developers and adopters of the sensing technology. 
However both the sensing and analysis tools are readily 
adapted to many other disciplines that seek to use images 
to understand the subject under study. In particular push 
broom imaging spectrometers can easily be developed for 
close range imaging in support of fields such as 
nondestructive testing, art conservation and machine 
vision. The access to spectral regions beyond the visible 
can open the doors to phenomena that can’t be sensed in 
the visible. The higher dimensional data offers the 
opportunity to segment out a wider range of variables than 
can be addressed with color or multispectral systems. For 
example, identifying the presence or even the 
concentration of multiple dyes in an artifact of interest. 
Because the environment can be controlled, many of the 
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steps used in remote sensing (e.g. atmospheric correction) 
can be simplified for use in other fields. In other cases, the 
remote sensing tools may provide insights into how to 
initiate extensions to other fields. For example, can the 
tools used to correct for atmospheric effects in remotely 
sensed images be used to characterize and correct for the 
impact of aging varnishes on the appearance of underlying 
paint pigments. Figure 10 shows an example of how 
remote sensing spectral analysis techniques have been used 
to help bring out the overwritten text in an ancient 
manuscript.  

 

  Original 

   

Processed by Matched    Processed by Least 
Filter       Squares 

Figure 10. Illustration of how spectral image processing tools 
developed from remote sensing can be used to analyze spectral 
images of ancient documents. In the original the overwritten text 
is clear and the original text is almost completely obscured. The 
bottom two panels show how spec-processing was applied to 
bring out the original text and illustration. "Photograph: 
Produced by The Rochester Institute of Technology and Johns 
Hopkins University. Coed. tral pyright resides with the owner of 
the Original Processed by Least Squares  

 
 

A major limitation of imaging spectroscopy is the 
assumption that more spectral bands means more 
information. In fact, there are many cases where the 
spectral information is highly correlated across wide 
regions of the spectrum such that more bands may add 
little or no new information. More importantly, the 
increase in the inherent dimensionality of the data (a rough 
estimate of the number of variables that may be separable 
and explainable by the spectral data) is almost never 
directly tied to the increase in the number of bands. Thus a 

remotely sensed image with 200+ bands may have an 
inherent dimensionality of only 10-20 dimensions and for 
some scenes perhaps only a few inherent dimensions. Thus 
the user should be cautioned about how much information 
to expect from imaging spectroscopy. Most importantly, 
the fundamental limitation of remote sensing should be 
kept in mind. We can only hope to sense those phenomena 
that have an optical manifestation. Many problems do not 
have optical manifestations at the spatial spectral 
dimensions available for remote sensing.  
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